Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(19): e2301876, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37096836

RESUMO

Determination of a reaction pathway is an important issue for the optimization of reactions. However, reactions in solid-state compounds have remained poorly understood because of their complexity and technical limitations. Here, using state-of-the-art high-speed time-resolved synchrotron X-ray techniques, the topochemical solid-gas reduction mechanisms in layered perovskite Sr3 Fe2 O7- δ (from δ ∼ 0.4 to δ = 1.0), which is promising for an environmental catalyst material is revealed. Pristine Sr3 Fe2 O7- δ shows a gradual single-phase structural evolution during reduction, indicating that the reaction continuously proceeds through thermodynamically stable phases. In contrast, a nonequilibrium dynamically-disordered phase emerges a few seconds before a first-order transition during the reduction of a Pd-loaded sample. This drastic change in the reaction pathway can be explained by a change in the rate-determining step. The synchrotron X-ray technique can be applied to various solid-gas reactions and provides an opportunity for gaining a better understanding and optimizing reactions in solid-state compounds.

2.
ACS Appl Mater Interfaces ; 15(4): 5293-5300, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36660899

RESUMO

An environmental catalyst in which a transition metal (Mn, Fe, or Co) was substituted into the Ti site of the host material, SrTiO3, was synthesized, and the reactivity of lattice oxygen was evaluated. For CO oxidation, Mn- and Co-doped SrTiO3 catalysts, which provided high thermal stabilities, exhibited higher activities than Pt/Al2O3 catalysts despite their low surface areas. Temperature-programmed reduction experiments using X-ray absorption fine structure (XAFS) measurements showed that the lattice oxygen of Co-doped catalyst was released at the lowest temperature. Isotopic experiments with CO and 18O2 revealed that the lattice oxygen was involved in CO oxidation on Fe- and Co-doped catalysts; that is, CO oxidation on these catalysts proceeded via the Mars-van Krevelen mechanism. On the other hand, for Mn-doped catalyst, the contribution of lattice oxygen to CO oxidation was relatively negligible, indicating that the reaction proceeded according to the Langmuir-Hinshelwood mechanism. This paper clearly demonstrates that the catalytic mechanism can be adjusted by substituting transition metals into SrTiO3.

3.
J Am Chem Soc ; 145(3): 1631-1637, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36625846

RESUMO

Hydrogen spillover is a phenomenon in which hydrogen atoms generated on metal catalysts diffuse onto catalyst supports. This phenomenon offers reaction routes for functional materials. However, due to difficulties in visualizing hydrogen, the fundamental nature of the phenomenon, such as how far hydrogen diffuses, has not been well understood. Here, in this study, we fabricated catalytic model systems based on Pd-loaded SrFeOx (x ∼ 2.8) epitaxial films and investigated hydrogen spillover. We show that hydrogen spillover on the SrFeOx support extends over long distances (∼600 µm). Furthermore, the hydrogen-spillover-induced reduction of Fe4+ in the support yields large energies (as large as 200 kJ/mol), leading to the spontaneous hydrogen transfer and driving the surprisingly ultralong hydrogen diffusion. These results show that the valence changes in the supports' surfaces are the primary factor determining the hydrogen spillover distance. Our study leads to a deeper understanding of the long-debated issue of hydrogen spillover and provides insight into designing catalyst systems with enhanced properties.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34133123

RESUMO

Pt-based catalysts are commonly employed as NOx-trapping catalysts for automobiles, while perovskite oxides have received attention as Pt-free NOx-trapping catalysts. However, the NOx storage performance of perovskite catalysts is significantly inferior at low temperatures and with coexisting gases such as H2O, CO2, and SO2. This study demonstrates that NOx storage reactions proceed over redox site (Mn, Fe, and Co)-doped SrTiO3 perovskites. Among the examined catalysts, Mn-doped SrTiO3 exhibited the highest NOx storage capacity (NSC) and showed a high NSC even at a low temperature of 323 K. Moreover, the high NOx storage performance of Mn-doped SrTiO3 was retained in the presence of poisoning gases (H2O, CO2, and SO2). NO oxidation experiments revealed that the NSC of Co-doped SrTiO3 was dependent on the NO oxidation activity from NO to NO2 via lattice oxygen, which resulted in an inferior NSC at low temperatures. On the other hand, Mn-doped SrTiO3 successfully adsorbed NO molecules onto its surface at 323 K without the NO oxidation process using lattice oxygens. This unique adsorption behavior of Mn-doped SrTiO3 was concluded to be responsible for the high NSC in the presence of poisoning gases.

5.
Inorg Chem ; 60(13): 9359-9367, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34137588

RESUMO

Relationship between the local structures of middle lanthanoid elements (Ln; Eu, Gd, Tb, and Dy) in their complex oxides and the characteristic features of the L1-edge and L3-edge X-ray absorption near edge structure (XANES) was investigated. There was a significant correlation between the pre-edge peak areas of the Ln L1-edge or the full widths at half maximum of the white line of the Ln L3-edge XANES spectra and the abstract physical indexes defined by bond angles formed by the middle Ln elements and the two adjacent oxygen atoms, which act as indicators of local configurational disorder of the target element. Theoretical simulation based on multiple scattering theory revealed that the pre-edge peak in the Ln L1-edge XANES spectra originates due to the p-d hybridization that occurs above the Fermi energy. This systematic survey demonstrated a universal method to estimate the local structure of the middle Ln elements by means of XANES spectroscopy.

6.
Chem Sci ; 12(13): 4940-4948, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-34163741

RESUMO

Loading Ag and Co dual cocatalysts on Al-doped SrTiO3 (AgCo/Al-SrTiO3) led to a significantly improved CO-formation rate and extremely high selectivity toward CO evolution (99.8%) using H2O as an electron donor when irradiated with light at wavelengths above 300 nm. Furthermore, the CO-formation rate over AgCo/Al-SrTiO3 (52.7 µmol h-1) was a dozen times higher than that over Ag/Al-SrTiO3 (4.7 µmol h-1). The apparent quantum efficiency for CO evolution over AgCo/Al-SrTiO3 was about 0.03% when photoirradiated at a wavelength at 365 nm, with a CO-evolution selectivity of 98.6% (7.4 µmol h-1). The Ag and Co cocatalysts were found to function as reduction and oxidation sites for promoting the generation of CO and O2, respectively, on the Al-SrTiO3 surface.

7.
ACS Appl Mater Interfaces ; 13(21): 24615-24623, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34013728

RESUMO

We evaluated the catalytic performance of the Rh-Fe/Al2O3 catalyst during a three-way catalytic reaction and found, by chance, that a part of Fe species was dissolved into the γ-Al2O3 support and worked as an oxygen storage material, which adjusts the oxygen concentration around the catalytically active sites to a suitable level for three-way catalysis. In this study, we demonstrated that the Fe-doped γ-Al2O3 can reversibly store and release oxygen by the redox of Fe2+/Fe3+ at the tetrahedral (Td) site of the spinel structure without its structure deformation. The finding that a spinel-structured metal oxide, Fe-doped γ-Al2O3, could work as an oxygen storage material suggested a new opportunity for the development of oxygen storage materials without rare metals.

8.
ACS Appl Mater Interfaces ; 13(6): 7216-7226, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33543618

RESUMO

The Ruddlesden-Popper (RP)-type layered perovskite is a candidate material for a new nitrogen oxide (NOx) storage catalyst. Here, we investigate the adsorption and oxidation of NOx on the (001) surfaces of RP-type oxide Sr3Fe2O7-δ for all of the terminations by comparing to those of simple perovskite SrFeO3-δ by the density functional theory (DFT) calculations. The possible (001) cleavages of Sr3Fe2O7 generate two FeO2- and three SrO-terminated surfaces, and the calculated surface energies indicated that the SrO-terminated surface generated by the cleavage at the rock salt layer is the most stable one. The oxygen of the FeO2-terminated surfaces could be removed with significantly low energy because the process involves the favorable reduction of the Fe4+ site. Consequently, the surface oxygen at the FeO2 site could easily oxidize adsorbed NO to NO2 by the Mars-van Krevelen mechanism. The resulting oxygen vacancy in the surface would be filled easily with lattice oxygen in bulk. The oxidation of NO with adsorbed molecular O2 was unfavorable by both the Langmuir-Hinshelwood and Eley-Rideal mechanisms because this process does not involve the reduction of the Fe4+ site. The oxygen of the SrO-terminated surfaces was tightly bound and acted as the adsorption site of NO and NO2. An electron transfer strengthened the NOx binding to the surface by forming nitrite (NO2-) or nitrate (NO3-) species. The DFT calculations revealed that the RP-type structure promoted NOx oxidation and storage properties by forming active oxygen due to the Jahn-Teller distortion and by exposing SrO-terminated surfaces due to the cleavage at the rock salt layer.

9.
Phys Chem Chem Phys ; 23(4): 2575-2585, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33305299

RESUMO

The role of catalyst support and regioselectivity of molecular adsorption on a metal oxide surface is investigated for NO reduction on a Cu/γ-alumina heterogeneous catalyst. For the solid surface, computational models of the γ-alumina surface are constructed based on the Step-by-Step Hydrogen Termination (SSHT) approach. Dangling bonds, which appear upon cutting the crystal structure of a model, are terminated stepwise with H atoms until the model has an appropriate energy gap. The obtained SSHT models reflect the realistic infrared (IR) and ultraviolet-visible (UV/Vis) spectra. Vibronic coupling density (VCD), as a reactivity index, is employed to elucidate the regioselectivity of Cu adsorption on γ-alumina and that of NO adsorption on Cu/γ-alumina in place of the frontier orbital theory that could not provide clear results. We discovered that the highly dispersed Cu atoms are loaded on Lewis-basic O atoms, which is known as the anchoring effect, located in the tetrahedral sites of the γ-alumina surface. The role of the γ-alumina support is to raise the frontier orbital of the Cu catalyst, which in turn gives rise to the electron back-donation from Cu/γ-alumina to NO. In addition, the penetration of the VCD distribution of Cu/γ-alumina into the γ-alumina support indicates that the excessive reaction energy dissipates into the support after NO adsorption and reduction. In other words, the support plays the role of a heat bath. The NO reduction on Cu/γ-alumina proceeds even in an oxidative atmosphere because the Cu-NO bond is strong compared to the Cu-O2 bond.

10.
ACS Appl Mater Interfaces ; 12(50): 55994-56003, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33287543

RESUMO

It is important to understand the reduction processes of mixed metal oxides or metal oxide interfaces in three-way catalytic reactions toward replacing the currently used high-cost Pt group metal catalysts. The redox behavior of simple Ni-Cu alloy catalysts, which exhibit high catalytic activity and durability during a three-way catalytic reaction, was studied by operando X-ray absorption spectroscopy (XAS). The operando XAS analyses revealed that Ni-Cu species changed from the NiO-Cu2O to Ni-Cu alloy and vice versa under reductive and oxidative conditions, respectively. The real-time monitoring of the oxidation states of Ni and Cu species indicated that the Cu species assisted the reduction of Ni species, in agreement with the density functional theory-based study of NiO reduction by carbon monoxide in the presence of metallic Cu nanoparticles.

11.
Phys Chem Chem Phys ; 22(42): 24181-24190, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33000816

RESUMO

Improvement of the low-temperature activity for NO oxidation catalysts is a crucial issue to improve the NOx storage performance in automotive catalysts. We have recently reported that the lattice oxygen species in SrFeO3-δ (SFO) are reactive in the oxidation of NO to NO2 at low temperatures. The oxidation of NO using lattice oxygen species is a powerful means to oxidize NO in such kinetically restricted temperature regions. This paper shows that Fe-site substitution of SFO with Mn or Co improves the properties of lattice oxygen such as the temperature and amount of oxygen release/storage, resulting in the enhancement of the activity for NO oxidation in a low-temperature range. In particular, NO oxidation on SrFe0.8Mn0.2O3-δ is found to proceed even at extremely low temperatures <423 K. From oxygen release/storage profiles obtained by temperature-programmed reactions, Co doping into SFO increases the amount of released oxygen owing to the reducibility of the Co species and promotes the phase transformation to the brownmillerite phase. On the other hand, Mn doping does not increase the oxygen release amount and suppresses the phase transformation. However, it significantly decreases the oxygen migration barrier of SFO. Substitution with Mn renders the structure of SFO more robust and maintains the perovskite structure after the release of oxygen. Thus, the oxygen release properties are strongly dependent on the crystal structure change before and after oxygen release from the perovskite structure, which has a significant effect on NO oxidation and the NOx storage performance.

12.
Commun Chem ; 3(1): 137, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36703358

RESUMO

Artificial photosynthesis is a desirable critical technology for the conversion of CO2 and H2O, which are abundant raw materials, into fuels and chemical feedstocks. Similar to plant photosynthesis, artificial photosynthesis can produce CO, CH3OH, CH4, and preferably higher hydrocarbons from CO2 using H2O as an electron donor and solar light. At present, only insufficient amounts of CO2-reduction products such as CO, CH3OH, and CH4 have been obtained using such a photocatalytic and photoelectrochemical conversion process. Here, we demonstrate that photocatalytic CO2 conversion with a Ag@Cr-decorated mixture of CaGa4O7-loaded Ga2O3 and the CaO photocatalyst leads to a satisfactory CO formation rate (>835 µmol h-1) and excellent selectivity toward CO evolution (95%), with O2 as the stoichiometric oxidation product of H2O. Our photocatalytic system can convert CO2 gas into CO at >1% CO2 conversion (>11531 ppm CO) at ambient temperatures and pressures.

13.
ACS Appl Mater Interfaces ; 11(41): 37875-37884, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31550116

RESUMO

Sr1.6K0.37Na1.43Ta5O15, which belongs to the Na-substituted Sr2KTa5O15 series of compounds with a tetragonal tungsten bronze structure, was fabricated using a flux mixture of KCl and NaCl (KCl/NaCl molar ratio = 55:45). It exhibited higher CO formation rate (94.6 µmol h-1), better selectivity for CO evolution (85.5%), and better stability of the photocatalytic activity than those of bare Sr2KTa5O15 and other Na-substituted Sr2KTa5O15 samples synthesized from flux mixtures with different KCl/NaCl ratios. X-ray photoelectron spectroscopic studies revealed that the surface atomic Sr/Ta ratio of Sr1.6K0.37Na1.43Ta5O15 was larger than that of Sr2KTa5O15. To clarify the factor responsible for the improvement in the photocatalytic activity facilitated by Na substitution, as well as to elucidate the reaction mechanism, the surface species were characterized by in situ Fourier transform infrared spectroscopy. It was observed that the bicarbonate species (HCO3-) adsorbed on the active Sr sites of Sr1.6K0.37Na1.43Ta5O15 was reduced to CO via the formate species during photoirradiation. The plot of the CO formation rate vs. the surface atomic Sr/Ta ratio for tetragonal tungsten bronze-type Sr-K-Ta-O complex oxides had the summit, indicating that Sr atoms on the surface enhance the photocatalytic activity, while an excessive amount of Sr on the surface leads to the decrease in the photocatalytic activity. Hence, it can be concluded that while the presence of Sr on the surface has a determining effect on the adsorption of CO2 and eventually on the photocatalytic activity, excess Sr on the surface that exists as SrCO3 or Sr2Ta2O7 suppresses the photocatalytic activity. Thus, Sr1.6K0.37Na1.43Ta5O15 showed higher CO formation rate than Sr2KTa5O15 did.

14.
ACS Appl Mater Interfaces ; 11(30): 26985-26993, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31262168

RESUMO

The development of NOx-trapping catalysts for automobiles is highly desired to meet the current strict exhaust emission regulations. This study demonstrates that NOx oxidation and storage reactions proceed over Pt-free Sr3Fe2O7-δ with a Ruddlesden-Popper-type layered perovskite structure. Two types of Sr-Fe perovskite with oxygen storage capacity, namely, SrFeO3-δ and Sr3Fe2O7-δ, are studied as NOx-trapping catalysts. Sr3Fe2O7-δ shows higher NOx storage capacity than SrFeO3-δ; its activity is comparable to that of Pt/Ba/Al2O3 calcined at 1273 K. NOx temperature-programmed desorption and diffuse reflectance infrared Fourier transform experiments confirm the superior NOx-trapping ability of Sr3Fe2O7-δ over SrFeO3-δ. In addition, NO temperature-programmed reactions and O2 temperature-programmed desorption experiments reveal that these catalysts operate through a novel NO oxidation mechanism involving the consumption of their lattice oxygens and topotactic structural changes at a temperature of around 350-400 K. The reduction performance of trapped NOx on Pd-modified Sr-Fe perovskites is investigated by lean-rich cycle experiments using H2 as the reductant. Pd/Sr3Fe2O7-δ shows significantly high NOx removal efficiency over the entirety of each lean-rich period. Modifying Sr3Fe2O7-δ with Pd is also effective for NOx storage in the presence of H2O and CO2 and the regeneration of the catalyst following SOx sorption. Sr3Fe2O7-δ, with both NOx adsorption and NO oxidation capabilities, acts as a Pt-free NOx-trapping catalyst, exhibiting both high NOx storage capacity and high thermal tolerance.

15.
Phys Chem Chem Phys ; 21(35): 18816-18822, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31187809

RESUMO

Ni-Cu alloy supported on γ-Al2O3 catalysts prepared by high-temperature hydrogen reduction exhibit high catalytic activity and durability for a three-way catalytic reaction under both oxidative and reductive conditions because of their self-regenerating feature. DFT calculations showed that Ni-oxide was reduced to Ni metal by CO in the presence of Cu metal because of the Ni-Cu alloy effect but was not in the absence of Cu metal.

16.
Front Chem ; 7: 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30746360

RESUMO

The rare earth-iron mixed oxide (REFeO3) is an attractive material in fields such as electronic, magnetic, and catalytic research. Generally, orthorhombic REFeO3 (o-REFeO3) with a perovskite structure is better known than hexagonal REFeO3 (h-REFeO3), because o-REFeO3 is thermodynamically stable for all RE elements. However, h-REFeO3 has a very interesting crystal structure in which a RE and Fe layer are alternately stacked along the c-axis in the unit cell; nevertheless, synthesis of the h-REFeO3 belonging to metastable phase can be problematic. Fortunately, solution-based synthetic methods like solvothermal or coprecipitation synthesis have recently enabled the selective synthesis of h-REFeO3 and o-REFeO3 with comparative ease. Although the electronic and magnetic properties of h-REFeO3 have typically been evaluated, recent research has also revealed excellent catalytic properties that enable environmental cleanup reactions such as hydrocarbon or CO oxidation. This mini-review introduces a synthetic method for controlling the crystal structure between orthorhombic and hexagonal REFeO3 and the catalytic performance of h-REFeO3-based materials.

17.
Chem Rec ; 19(7): 1420-1431, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30663225

RESUMO

This paper describes a systematic study of the spectra and local structures of lanthanide (Ln) L-edge XANES. We found that Ln L1 and L3 -edge XANES spectra exhibit characteristic features correlated to their local symmetry through experimental and theoretical simulations. We also propose a simple local structure index criterion for a combination of XANES study and theoretical simulation. Possible solutions of intrinsic problems such as low resolution of characteristic features in the Ln L-edge XANES and site distributions are also discussed.

18.
Chempluschem ; 84(5): 442, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31943895

RESUMO

Invited for this month's cover is the group of Dr. Katsutoshi Sato and Prof. Dr. Katsutoshi Nagaoka (Kyoto University) and collaborators at Oita and Kyushu Universities. The cover picture shows the proposed mechanism for automotive exhaust purification over a Pt-Co alloy nanoparticle catalyst with an extremely low Pt/Co molar ratio. In the catalyst, the isolated electron-rich Pt atoms are present on the surface of the nanoparticles and play an important role in NOx capture and activation, which are important elementary steps in exhaust purification. Read the full text of the article at 10.1002/cplu.201800542.

19.
Chempluschem ; 84(5): 447-456, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31943901

RESUMO

There is interest in minimizing or eliminating the use of Pt in catalysts by replacing it with more widely abundant and cost-effective elements. The alloying of Pt with non-noble metals is a potential strategy for reducing Pt use because interactions between Pt and non-noble metals can modify the catalyst structure and electronic properties. Here, a γ-Al2 O3 -supported bimetallic catalyst [Pt(0.1)Co(1)/Al2 O3 ] was prepared which contained 0.1 wt % Pt and 1 wt % Co and thus featured an extremely low Pt : Co ratio (<1 : 30 mol/mol). The Pt and Co in this catalyst formed alloy nanoparticles in which isolated electron-rich Pt atoms were present on the nanoparticle surface. The activity of this Pt(0.1)Co(1)/Al2 O3 catalyst for the purification of automotive exhaust was comparable to the activities of 0.3 and 0.5 wt % Pt/γ-Al2 O3 catalysts. Electron-rich Pt and metallic Co promoted activation of NOx and oxidization of CO and hydrocarbons, respectively. This strategy of tuning the surrounding structure and electronic state of a noble metal by alloying it with an excess of a non-noble metal will enable reduced noble metal use in catalysts for exhaust purification and other environmentally important reactions.

20.
Phys Chem Chem Phys ; 20(40): 25592-25601, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30131992

RESUMO

Replacing rare and expensive elements, such as Pt, Pd, and Rh, commonly used in catalytic devices with more abundant and less expensive ones is mandatory to realize efficient, sustainable and economically appealing three-way catalysts. In this context, the surface of a Cr-Cu/CeO2 system represents a versatile catalyst for the conversion of toxic NO into harmless N2. Yet, a clear picture of the underlying mechanism is still missing. We provide here a detailed insight into such a reaction mechanism by means of a combined experimental and theoretical study. Fourier-transform infrared spectroscopy is used to detect all the products resulting from catalytic reactions of NO and CO on the surface of a Cr-Cu/CeO2 nanocatalyst. CO pulsing experiments unveil that reactions of CO with O atoms at the Cr-Cu/CeO2 surface are the major factors responsible for the formation of surface vacancies. On these grounds, a comprehensive picture of the NO reduction and the role of both Cu and Cr dopants and vacancies is rationalized by first-principles modeling. Our findings provide a general route for the realization of ceria-based cost-effective catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...